NG Teknisk notat

Til:	Statsforvalteren i Innlandet
v/	Søndre Sølen Verneområdestyre v/ Hilde Nystuen
Kopi til:	
Dato:	2024-08-30
Rev.nr. / Rev.dato:	0/
Dokumentnr.:	20240339-01-TN
Prosjekt:	Vurdering av naturbasert erosjonssikring i Mistra
Prosjektleder:	Ingar Haug Steinholt
Utarbeidet av:	Eivind Magnus Paulsen
Kontrollert av:	Ingar Haug Steinholt

Kartlegging, produksjon og analyse av terrengmodeller

Innhold

1	Innle	edning	3	
2	Felta	rbeid og datainnsamling	6	
3	Pros	essering av data og sluttprodukter	6	
4	Anal	yse av endringer fra 2023 til 2024	7	
	4.1	Endringer i elvemel og sikringstiltak etter en vinter	7	
	4.2	Endringer i terrenget etter en vinter og vårflom	12	
	4.3	Endringer i terrenget før og etter sikringstiltak	15	
5	Орр	summering	17	
6	Referanser			

Figurer

Figur 1-1 3D-modell av sikringstiltaket slik det var 11.juni 2024.	3
Figur 1-2 Oversiktsbilde fra 11. juni 2024 med sikringstiltaket i bakgrunnen til	høyre i bildet. 3
Figur 1-3 Ortofoto fra 11.juni 2024.	4
Figur 1-4 Terrengmodell fra 11.juni 2024.	5
Figur 4-1 Signifikante endringer i avstander mellom punktskyene.	7
Figur 4-2 Endringer i avstand (xyz) fra oktober 2023 til juni 2024, sett ovenfra	. 8
Figur 4-3 Endringer i avstand (xyz) fra oktober 2023 til juni 2024, sett i perspe	ktiv. 8
Figur 4-4 Endringer i avstand (xyz) fra oktober 2023 til juni 2024 på over en m	neter. 9
Figur 4-5 Endringer fra oktober 2023 til juni 2024 med blå kontur.	10
Figur 4-6 Punktsky fra 2023 er fargelagt basert på avstand til punktskyen fra 2	2024. 11
Figur 4-7 Punktskyen fra oktober 2023 sammen med et utsnitt av punktskyen	n fra juni 2024. 12
Figur 4-8 Signifikante endringer fra oktober 2023 til juni 2024.	13
Figur 4-9 Endringer fra oktober 2023 til juni 2024. Figuren viser avstand (xyz).	. 14

NORGES GEOTEKNISKE INSTITUTT	Hovedkontor Oslo	Avd. Trondheim	T 22 02 30 00	BANK	ISO 9001/14001
NGI.NO	PB. 3930 Ullevål Stadion	PB. 5687 Torgarden		KONTO 1506 91 98764	CERTIFIED BY BSI
	0806 Oslo	7485 Trondheim	NGI@ngi.no	ORG.NR 932 089 114 MVA	FS 32989/EMS 612006

Figur 4-10 Antatt signifikante endringer mellom juli 2023 og juni 2024.	15
Figur 4-11 Endringer i avstand (xyz) mellom juli 2023 og juni 2024.	16

Vedlegg

- Vedlegg A Landmåling og droneflyging 11.juni 2024
- Vedlegg B Kartlegging med lidar
- Vedlegg C Oversiktskartlegging og produksjon av ortofoto
- Vedlegg D Detaljkartlegging av elvemel og sikringstiltak

Kontroll- og referanseside

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 3

1 Innledning

Mistdalen er et seterområde ved Mistra som ligger om lag 20 km øst for tettstedet Øvre Rendal i Rendalen kommune. I 2003 ble en liten parsell ved seterområdet erosjonssikret av NVE for å hindre videre erosjon av elveskråning. I etterkant av dette arbeidet har erosjonssikringen blitt ødelagt og erosjon har tiltatt. I august 2023 ble det utført et nytt sikringstiltak med endringer i terrenget. Statsforvalteren i Innlandet (heretter kalt oppdragsgiver) ønsker derfor en ny kartlegging for å kunne vurdere effekten av tiltaket etter en sesong med vinter og vårflom. Datagrunnlaget for sammenligning er tidligere kartlegginger fra før og etter tiltaket, dvs. dronekartlegging fra juli og oktober 2023.

Figur 1-1 3D-modell av sikringstiltaket slik det var 11.juni 2024.

Figur 1-2 Oversiktsbilde fra 11. juni 2024 med sikringstiltaket i bakgrunnen til høyre i bildet.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 4

Figur 1-3 Ortofoto fra 11.juni 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 5

Figur 1-4 Terrengmodell fra 11.juni 2024.

2 Feltarbeid og datainnsamling

Feltarbeid ble utført 11.juni 2024 av Eivind Magnus Paulsen. Kartlegging av terrenget ble utført med drone av typen DJI Matrice 300 RTK og med eksterne sensorer av type L1, L2 og P1. Det ble også benyttet en drone av typen DJI Mavic 3 Enterprise (M3E-RTK). Det ble gjennomført flere separate flyginger, to basert på LiDAR (L1 og L2), en med fullformat kamera (P1), og resterende med kamera på dronen M3E.

LiDAR er en optisk fjernmålingsteknikk som brukes til hurtig måling av fysiske objekters posisjon. Den aktuelle sensoren (L1) utfører opptil 120.000 avstandsmålinger per sekund. Punkttetthet på bakken bestemmes av flyhøyde og hastighet til dronen. Dronen ble programmert til å fly ca. 60 meter over terrenget som gir en punkttetthet på ca. 400-600 punkter per kvadratmeter. Til sammenligning har flybåren laser en punktetthet på mellom 2 og 5 punkter per kvadratmeter.

3 Prosessering av data og sluttprodukter

Det er utført flere flyginger med to forskjellige typer droner og tre sensorer. Det er flere datasett som er tatt med videre og brukt som grunnlag til dataleveranser. Det er også en analyse av endringer i terrenget og i elvemelen.

- ▼ Vedlegg A Landmåling og droneflyging 11.juni 2024
- ▼ Vedlegg B Kartlegging med lidar som dekker samme område som juli 2023
- ▼ Vedlegg C Oversiktskartlegging og produksjon av ortofoto
- **▼** Vedlegg D Detaljkartlegging av elvemel og sikringstiltak

4 Analyse av endringer fra 2023 til 2024

Alle andre data i analysen er dokumentert i referanse /1/ og /2/. Alle tidligere data fra lidarskanning og detaljert kartlegging av elvemel er prosessert på nytt i forbindelse med analysen. Hensikten er å fjerne endringer som skyldes forskjeller i prosessering slik at relevante endringer blir tydeligere. Alle lidardata er også klassifisert med samme metode for å fjerne vegetasjon, igjen for å harmonisere dataprosessering.

Beregning av endringer utføres ved å beregne avstanden mellom punktskyene fra forskjellig tidspunkt. Beregning er utført ved hjelp av M3C2 som er en modul i programvaren CloudCompare, se referansene /3/ og /4/. Det er også endringer som er bedre synlig i ortofoto og 3D-modeller.

4.1 Endringer i elvemel og sikringstiltak etter en vinter

Både laserskanning og fotogrammetri viser signifikante endringer etter en vinter og vårflom, se Figur 4-1. De røde områdene er et av resultatene fra M3C2 hvor nøyaktighet på ko-registrering er antatt å være ca. 1 cm. Alle endringer under ca. 2 cm vil derfor ikke være signifikante, selv om nøyaktigheten internt i et datasett kan være bedre. Punkt-skyene basert på dronefoto gir en tydelig visuell oversikt over endringer fordi detaljeringsgraden er bedre. Dette skyldes at bildene er fra kortere avstander og med en mer direkte synsvinkel.

Figur 4-1 Signifikante endringer i avstander mellom punktskyene.

Figur 4-2 og Figur 4-3 viser endringer etter vinter og vår 2024. Blå farge viser områder hvor endring i avstanden er positiv (mer materiale) og rød farge viser områder med endringer som er negative (erosjon/utglidninger). Alle områder uten farge har ikke målbare endringer i avstand.

Figur 4-2 Endringer i avstand (xyz) fra oktober 2023 til juni 2024, sett ovenfra.

Figur 4-3 Endringer i avstand (xyz) fra oktober 2023 til juni 2024, sett i perspektiv.

Figur 4-4 viser en sammenligning av et utsnitt av punktskyene fra oktober 2023 og juni 2024 med 30 cm bredde (snittets plassering er vist i Figur 4-7). For hver punktsky er det frembrakt en profil basert på minimum og maksimum innenfor utsnittet på 30 cm bredde. Målinger mellom punktskyene viser en endring på over en meter i kartplanet. Det er tydelig at det har vært mange små utrasinger som gradvis har endret profilen på skråningen.

Figur 4-4 Endringer i avstand (xyz) fra oktober 2023 til juni 2024 på over en meter.

Figur 4-5 viser utsnitt av punktsky fra oktober 2023 som har røde konturlinjer. De blå linjene er konturen av punktskyen fra juni 2024. Den øverste delen nært benken vil trolig rase ut etter hvert som tiden går.

Figur 4-5 Endringer fra oktober 2023 til juni 2024 med blå kontur.

Figur 4-6 viser punktskyen fra 2023 med farger som viser korteste avstand (xyz) til punktskyen fra 2024. Det er noen blindsoner på undersiden av lyngen som henger utover kanten, men punktskyen har nok punkter til en visuell tolkning.

Figur 4-6 Punktsky fra 2023 er fargelagt basert på avstand til punktskyen fra 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 12

Figur 4-7 viser punktskyen fra 2023 sammen med et utsnitt av punktskyen fra juni 2024. Det er et lite område med ingen endring, dvs. i skjæringspunktet mellom de to flatene.

Figur 4-7 Punktskyen fra oktober 2023 sammen med et utsnitt av punktskyen fra juni 2024.

4.2 Endringer i terrenget etter en vinter og vårflom

Både Figur 4-8 og Figur 4-9 viser punktskyer hvor vegetasjon og bygninger er filtrert bort basert på klassifisering i programmet *DJI Terra*. Det er målbare endringer i terrenget mellom lidarskanning i oktober 2023 og juni 2024, men noe av dette skyldes forskjeller i vannstand og vegetasjon. I oktober 2023 var det flere områder med gress/myr som var oversvømt og dette påvirker analyse av endringer i terrenget. Figur 4-8 viser det som er antatt å være signifikante endringer, men målinger i elv og bekkeløp kan ha store målefeil sammenlignet med resten av punktskyen. Den aktuelle lidarsensoren er ikke egnet til å måle hverken stillestående eller vann i bevegelse.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 13

Figur 4-8 Signifikante endringer fra oktober 2023 til juni 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 14

Figur 4-9 Endringer fra oktober 2023 til juni 2024. Figuren viser avstand (xyz).

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 15

4.3 Endringer i terrenget før og etter sikringstiltak

Det er målbare endringer i terrenget mellom lidarskanning i oktober 2023 og juni 2024, men noe av dette skyldes forskjeller i vannstand og vegetasjon.

Figur 4-10 Antatt signifikante endringer mellom juli 2023 og juni 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 16

Figur 4-11 Endringer i avstand (xyz) mellom juli 2023 og juni 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 17

5 **Oppsummering**

Data fra denne og tidligere kartlegginger er benyttet til å vurdere langsiktig effekt av sikringstiltaket, og som dokumentasjon av nåværende tilstand. Analysene viser store endringer i elvemelen, men ingen målbare endringer av sikringstiltaket. I resten av terrenget er det kun noen mindre områder som er endret.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Side: 18

6 Referanser

- /1/ 20210578-03-TN (2023), Kartlegging og produksjon av terrengmodell.
- /2/ 20210578-04-TN (2023), Kartlegging og produksjon av terrengmodell.
- /3/ Dimitri Lague, Nicolas Brodu, Jérôme Leroux, Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z), ISPRS Journal of Photogrammetry and Remote Sensing, Volume 82, 2013, Pages 10-26, ISSN 0924-2716.
- /4/ M3C2-plugin, CloudCompare wiki. https://www.cloudcompare.org/doc/wiki/index.php/M3C2 (plugin)

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg A, side: 1

Vedlegg A

LANDMÅLING OG DRONEFLYGING

Innhold

A1	Etablering av GNSS basestasjon	2
A2	Signalering og innmåling	4
A3	Eksempler på innmåling av kjentpunkter	5

A1 Etablering av GNSS basestasjon

For å kunne måle inn kontrollpunkter, og fly med drone, er det vanlig å bruke tjenesten CPOS fra Statens kartverk via internett, enten fra SIM-kort i GNSS eller via hot-spot fra telefon. På grunn av mangelfull mobildekning er ikke internett tilgjengelig. Det er derfor ikke mulig å motta sanntids korreksjon fra en nettverks-basestasjon via tjenesten CPOS. Alternativet var derfor å sette opp lokale basestasjoner ved hjelp av to Emlid RS2+ som er to-frekvente GNSS-mottagere med radioforbindelse mellom hverandre. Det offentlige fastmerket (H29T0191) etablert av kommunen ble brukt til å etablere basestasjonen.

Figur 1-1 viser basestasjonen benyttet ved terrengkartlegging, og som er brukt som felles høydegrunnlag for alle målinger og flygninger med droner.

Figur 1-2 viser dronene M300 og M3E mottar sanntids korreksjonsdata (RTK) fra den lokale GNSS-basestasjonen. For å forbedre posisjons- nøyaktigheten ytterligere er alle drone-flygninger post-prosessert (PPK).

Det er de offisielle koordinatene på punktet H29T0191 som er brukt som høydegrunnlag. Kontrollmåling med statisk vektorberegning fra Hanestad viser en høydeforskjell på ca. 3,5 cm, men dette er ikke lagt vekt på videre. Vurderingen er at det er bedre med en lokal høydereferanse når man skal vurdere relative endringer over tid.

Name	Øst	Nord	Høyde	Høyde
	EUREF89, UTM32	EUREF89, UTM32	NN2000	Ellipsoide
H29T0191	623795.267	6862375.346	698.276	736.703
GCP-01	623893.294	6862655.366	699.891	738.322
GCP-02	623894.912	6862641.69	703.977	742.407
GCP-03	623809.312	6862650.165	701.808	740.239
GCP-04	623935.701	6862900.757	704.225	742.659
GCP-05	624088.352	6862759.314	706.317	744.746
GCP-06	624237.948	6862423.539	709.562	747.982
GCP-07	624097.639	6861921.101	696.649	735.064
GCP-10	623844.599	6862375.683	694.859	733.286
GCP-11	623760.745	6862029.437	695.167	733.589

Tahell 1-1	Viser navn	nå kontrol	lnunkter med	koordinater	og høvder
1 UDEII 1-1	VISEI IIUVII	ρα κοπτιοπ	punkter meu	KUUIUUUUUU	og nøyder.

Den offisielle ellipsoidiske høyde på fastmerket H29T0191 er 736.703m. Beregning av senter til antennen er som følger:

736.703 m [Offisiell høyde på fastmerket H29T0191]

+ 1.380 m [Avstand fra underkant av antenne til toppen av fastmerke]

+ 0.134 m [Avstand mellom senter til antenne og underkant antenne]

738.217 m [Tilsvarer den reelle høyden til basestasjonen]

A2 Signalering og innmåling

Figur 2-1 viser fysisk plassering av basestasjoner og kjentpunkter. Disse punktene brukes til å kontrollere og dokumentere kvaliteten på LiDAR og fotogrammetri.

Figur 2-1 viser plassering av kontrollpunkter (GCP) på bakken og fastmerket H29T0191

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg A, side: 5

A3 Eksempler på innmåling av kjentpunkter

Figur 3-1 viser eksempler på innmåling av signalerte kontrollpunkter.

Figur 3-1 viser eksempler på innmåling av kontrollpunkter.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg B, side: 1

Vedlegg B

KARTLEGGING MED LIDAR JUNI 2024

Innhold

B1	Generelle opplysninger om laserskanning i juni 2024	2
	B1.1 Dekningsområde	2
	B1.2 Etablering av kontrollflater	2
B2	Gjennomføring av laserskanning	3
	B2.1 Benyttede sensorsystemer	3
	B2.2 Prosessering av georeferert punktsky	3
B3	Resultater fra laserskanning	4
B4	Kvalitetskontroll	7
B5	Dataleveranse	7

Vedlegg

Kvalitetsrapport_2024-06-11 med PPK (Post Processed Kinematic) Kvalitetsrapport_2023-10-11 med PPK (Post Processed Kinematic)

B1 Generelle opplysninger om laserskanning i juni 2024

LiDAR er en optisk fjernmålingsteknikk som brukes til hurtig måling av fysiske objekters posisjon. Den aktuelle sensoren utfører opptil 120.000 avstandsmålinger per sekund. Punkttetthet på bakken bestemmes av flyhøyde og hastighet til dronen.

B1.1 Dekningsområde

Dekningsområdet er betydelig utvidet, men inkluderer samme område som kartleggingen som ble utført i 2023. Figuren nedenfor viser terrengmodell for oktober 2023 og juni 2024.

Figur 1-1 viser forskjellen i dekningsområde med lidar-data fra 2023 (venstre) og 2024 (høyre). Det er ikke identisk fargeskala i denne figuren.

B1.2 Etablering av kontrollflater

Kontrollflatene skal fungere som en kontroll av absolutt høyde. Absolutt nøyaktighet består av både horisontal og vertikal nøyaktighet. I dette måleopplegget er det vertikal nøyaktighet som kontrolleres ved å sammenligne med kontrollflater på bakken. Innmåling av kontrollflater er beskrevet i Vedlegg A.

B2 Gjennomføring av laserskanning

Feltarbeid ble utført 11.juni 2024 av Eivind Magnus Paulsen. Dronen ble programmert til å fly ca. 60 meter over terrenget som gir en punkttetthet på ca. 400-600 punkter per kvadratmeter. Til sammenligning har flybåren laser en punktetthet på mellom 2 og 5 punkter per kvadratmeter.

B2.1 Benyttede sensorsystemer

Kartlegging av terrenget ble utført med en drone av typen DJI Matrice 300 RTK og med ekstern sensor Zenmuse L1 og L2. Det ble gjennomført flere separate flyginger som er kombinert i etterkant.

Flygning #1 med lidar L1 var konfigurert med «non-repetetive» scanning som betyr at strålen beveger seg vinkelrett på banen til dronen, og med ikke overlappende linjer. Den var også konfigurert med «single return» i stedet for «triple return».

Flygning #2 med lidar L2 (som er en forbedret versjon av L1) var konfigurert med «repetetive» scanning som betyr at strålen beveger seg i sirkler som overlapper hverandre. Den var også konfigurert med «single return» i stedet for «triple return».

B2.2 Prosessering av georeferert punktsky

Beregning av navigasjonsløsning er utført i programvaren DJI Terra. Den benytter rådata fra to GNSS-antenner, treghetssensor (INU) og korreksjonsdata fra basestasjon. GNSS-beregningen er utført i WGS84, men er transformert til EUREF89 og UTM sone 32, og høydereferansesystem er NN2000. Beregningen er utført uavhengig av kontrollflatene.

B3 Resultater fra laserskanning

Rådata fra laserskanning blir prosessert i programmet *DJI Terra* og resultatet er en punktsky som er klassifisert basert på hva som er bakkepunkt og vegetasjon. Se Figur 1-2. Bygninger og broer er også klassifisert slik at de ikke blir med i en terrengmodell.

Figur 1-2 Punktsky med vegetasjon og bygninger fjernet (til venstre), og terrengpunkter og vegetasjon sammen (til høyre). Klassifiseringen av punkter er utført i programmet DJI Terra.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg B, side: 5

Figur 1-3 viser en terrengmodell med oppløsning på 20x20 cm.

Figur 1-3 Terrengmodell med oppløsning 20x20 cm

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg B, side: 6

Figur 3-4 viser punktskyen fra laserskanning 11.juni 2024.

Figur 3-4 Punktsky juni 2024 med data fra Lidar (L1+L2) med farge (RGB) hentet fra bilder.

B4 Kvalitetskontroll

Flygningene #1 og #2 er prosessert samlet i programmet DJI Terra. Kvalitetskontrollen er basert på sammenligning med kontrollflater. Gjennomsnittlig avvik er under 25 mm i høyde. I praksis er forventet høydenøyaktighet i resten av modellen nærmere 50 mm.

Lidar-data fra oktober 2023 er prosessert på nytt for å få mest mulig like forutsetninger for en sammenligning av datasett. Det er blant annet brukt samme metode for å skille punkter på bakken fra punkter fra vegetasjon og bygninger. Flygningene fra 2023 og 2024 er prosessert ved hjelp av PPK som betyr «Post Processed Kinematic». Denne metoden bruker rådata fra basestasjonen og rådata fra dronen og beregner deretter posisjonen til dronen.

B5 Dataleveranse

Resultater fra Lidar-skanningen leveres som en punktsky på LAS-format. Dette datasettet kan åpnes i de fleste programmer som kan bruke punktskyer. Et eksempel på et gratisprogram er <u>*CloudCompare*</u> hvor videre analyse er mulig /4/. For eksempel direkte sammenligning med tidligere kartlegginger, eller produksjon av overflatemodeller og terrengmodeller. Punktskyen med full oppløsning på LAS-format har en filstørrelse på ca. 30 GB. Den må derfor reduseres vesentlig før en analyse.

DJI Terra Quality Report

V4.1.0 2024-06-23 23:11 Mission: 2023-10-09-L1-PPK(1)

Quality Report for LiDAR Point Cloud Processing

Reconstruction Parameters

		幸 Point Cloud Output Parameters	
Use custom base station data	Yes	Ground Point Classification	Yes
Scenario	Point Cloud Processing	Ground Point Classification Parameters	Gentle Slope 20 m 6° 0.5 m
Point Cloud Density (By Percentage)	High	DEM	Yes
Point Cloud Effective Distance Range	3-300 m	DEM Parameters	By GSD 0.2 m
Accuracy Control and Check	Yes	Contour	Yes
Optimize Point Cloud Accuracy	Yes	Contour Parameters	Interval1 m Datum0 m Elevation Annotation Radius15 m Min Contour Length10 m
Smooth Point Cloud	No	Point Cloud Format	PNTS LAS
		Merged Output	No
		LiDAR Point Cloud Block Count	2
		Output Coordinate System	ETRS89 / UTM zone 32N NN2000 height

Warning Message

1 Warning: Some point clouds are removed due to incorrect positions or orientations

Mission Parameters	Vission Parameters						
S Aircraft Parameters (Aircraft 1)	X Aircraft Parameters (Aircraft 1)						
Hardware Parameters							
Payload	DJI Zenmuse L1						
Payload SN	3FCDJB4004TQQJ						
LiDAR Parameters	https://enterprise.dji.com/zenmuse-l1/specs						
LiDAR and IMU Calibration Parameters							
Parameters X (m)	Y (m)	Z (m)	roll (rad)	pitch (rad)	yaw (rad)		
Before Cali 0.03508 bration	0.01694	-0.04644	3.1226966	0.0050647	0.0041075		
Flight Parameters (1 Flights)							
Average Flight Speed	3.87m/s						
Flight Height	47.53m						
Ground Beam Diameter	237mm*23mm						
Pulse Rate	240kHz						

Scan Rate	720kHz	

芸 System Parameters

CPU	Intel Core(TM) i9-10900 CPU @ 2.80GHz 20 cores
GPU Count	1
GPU 0	NVIDIA GeForce RTX 2080 SUPER
RAM	32480 M

Accuracy Parameters

OS Status		
Fix	5.49%	
Other	4.51%	

IMU Trajectory Error

Parameters	X(E) RMSE	Average X(E)	Y(N) RMSE	Average Y(N)	Z(U) RMSE	Average Z(U)
Location	0.04452 m	0.0248 m	0.02412 m	0.0151 m	0.03636 m	0.01976 m
Attitude	0.000011 rad	0.0001784 rad	0.000006 rad	0.0001855 rad	0.0001248 rad	0.000589 rad

Point Cloud Check Point Error

Parameters	No. of Check Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation
Value	10	701.4903 m	-0.028634 m	-0.080706 m	0.040895 m	0.042265 m	0.048398 m	0.053017 m

🗄 Point Cloud Check Point List

ID	Check Point Latitude(Y/N)	Check Point Longitude (X/E)	Check Point Altitude (Z/ U)	Reconstruction Altitude	Altitude Difference	Max Altitude Difference	Average Altitude Differen ce	Reconstruction Altitude S tandard Deviation	Altitude Difference RMS E	Reflectivity
Targe t-01	623848.319 m	6862377.553 m	694.88 m	694.855738 m	-0.020262 m	0.037086 m	-0.020262 m	0.023455 m	0.030941 m	51.46
GCP- 1	623893.296 m	6862655.353 m	699.9 m	699.823294 m	-0.080706 m	-0.024605 m	-0.080706 m	0.027443 m	0.085238 m	70.56
Targe t-03	623886.099 m	6862649.397 m	702.96 m	702.899442 m	-0.056558 m	0.005426 m	-0.056558 m	0.019858 m	0.059937 m	91.36
Targe t-04	623932.951 m	6862901.104 m	704.25 m	704.202219 m	-0.046781 m	0.072838 m	-0.046781 m	0.033137 m	0.057307 m	64.58
Targe t-05	624055.758 m	6862888.051 m	701.16 m	/	/	/	/	/	/	0
Targe t-06	624090.524 m	6862609.404 m	704.8 m	/	/	/	/	/	/	0
Targe t-07	624088.961 m	6862425.426 m	700.01 m	700.049895 m	0.040895 m	0.243014 m	0.040895 m	0.033628 m	0.05289 m	48.81
Targe t-08	623803.971 m	6862667.683 m	701.79 m	/	/	/	/	/	/	0
Targe t-09	623823.252 m	6862644.346 m	701.67 m	701.657608 m	-0.008392 m	0.121659 m	-0.008392 m	0.025761 m	0.027012 m	54.64
Base	623802.022 m	6862650.854 m	703.5 m	1	/	/	1	/	/	0

Optimize Point Cloud Control Point Error

Value	1	698.681 m	-0.000001 m	-0.000001 m	-0.000001 m	0.000001 m	0.000001 m	0 m
Parameters	No. of Control Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation

ID	Control Point Latitude(Y/N)	Control Point Longitude (X/E)	Control Point Altitude(Z/ U)	Reconstruction Altitude	Altitude Difference	Max Altitude Difference	Average Altitude Differen ce	Reconstruction Altitude S tandard Deviation	Altitude Difference RMS E	Reflectivity
Targe t-02	623860.751 m	6862473.511 m	698.68 m	698.680999 m	-0.000001 m	0.10672 m	-0.000001 m	0.019819 m	0.019776 m	89.24

DEM Error

Valaa	(700 (1	0.040476	0 147592	0.04577(0.055725	0.071279	0.078101	
Parameters	No. of Check Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation	

DEM Checklist

ID	Check Point Latitude(Y/N)	Check Point Longitude(X/E)	Check Point Altitude (Z/U)	Reconstruction Altitude	Altitude Difference	Reflectivity
Targe t-01	623848.319 m	6862377.553 m	694.88 m	694.861229 m	-0.014771 m	51.46
GCP- 1	623893.296 m	6862655.353 m	699.9 m	699.756417 m	-0.147583 m	70.56
Targe t-03	623886.099 m	6862649.397 m	702.96 m	702.897956 m	-0.058044 m	91.36
Targe t-04	623932.951 m	6862901.104 m	704.25 m	704.195167 m	-0.053833 m	64.58
Targe t-05	624055.758 m	6862888.051 m	701.16 m	/	1	0
Targe t-06	624090.524 m	6862609.404 m	704.8 m	/	1	0
Targe t-07	624088.961 m	6862425.426 m	700.01 m	700.054776 m	0.045776 m	48.81
Targe t-08	623803.971 m	6862667.683 m	701.79 m	/	1	0
Targe t-09	623823.252 m	6862644.346 m	701.67 m	701.651596 m	-0.014404 m	54.64
Base	623802.022 m	6862650.854 m	703.5 m	/	1	0

(i) When altitude difference between check point and actual point is greater than 60 cm, error data of the check point will be displayed as * and the check point will not be used for calculation

Output Preview

🖸 DEM

Contour

Output Parameters

∓ Point Clou	id Density				
Scale	Point Cloud Average Density	Point Cloud Standard Density	Grid Side Length	Total Grid Number	Non-conforming Grid Ratio
1:500	1063points/m ²	16points/m ²	0.25 m	1024496	1.19%
1:1000	1063points/m ²	4points/m ²	0.5 m	258676	0.99%
1:2000	1063points/m ²	1points/m ²	1 m	65408	1.13%

🗋 Output List

PNTS LAS DEM TIF DEM Tile

DJI Terra Quality Report

V4.1.0 2024-06-20 21:50 Mission: 20240339-Mistdalen-L2-L1-FINAL

Quality Report for LiDAR Point Cloud Processing

Reconstruction Parameters

幸 Point Cloud Optimization Parameter	^S	幸 Point Cloud Output Parameters	
Use custom base station data	Yes	Ground Point Classification	Yes
Scenario	Point Cloud Processing	Ground Point Classification Parameters	Gentle Slope 20 m 6° 0.5 m
Point Cloud Density (By Percentage)	High	DEM	Yes
Point Cloud Effective Distance Range	20-300 m	DEM Parameters	By GSD 0.5 m
Accuracy Control and Check	Yes	Contour	No
Optimize Point Cloud Accuracy	Yes	Point Cloud Format	PNTS LAS
Smooth Point Cloud	No	Merged Output	Yes
		LiDAR Point Cloud Block Count	16
		Output Coordinate System	ETRS89 / UTM zone 32N NN2000 height

Mission Parameters

ℜ Aircraft Parameters (Aircraft 1)					
Hardware Parameters					
Payload	DJI Zenmuse L1				
Payload SN	3FCDJ86004F5LJ				
LiDAR Parameters	https://enterprise.dji.com/zenmuse-l1/specs				
LiDAR and IMU Calibration Parameters					
Parameters X (m)	Y (m)	Z (m)	roll (rad)	pitch (rad)	yaw (rad)
Before Cali 0.03508 bration	0.01694	-0.04644	3.1310837	0.0076108	0.0059091
Before Cali 0.03508 bration Flight Parameters (1 Flights)	0.01694	-0.04644	3.1310837	0.0076108	0.0059091
Before Cali bration0.03508Before Cali bration0.03508Flight Parameters (1 Flights)Average Flight Speed	0.01694 4.7m/s	-0.04644	3.1310837	0.0076108	0.0059091
Before Cali bration 0.03508 Flight Parameters (1 Flights) Average Flight Speed Flight Height	0.01694 4.7m/s 57.47m	-0.04644	3.1310837	0.0076108	0.0059091
Before Cali bration0.03508Before Cali brationBefore Cali brationAlgebore Cali brateAlgebore Cali 	0.01694 4.7m/s 57.47m 287mm*28mm	-0.04644	3.1310837	0.0076108	0.0059091
Before Cali bration 0.03508 Flight Parameters (1 Flights) Average Flight Speed Flight Height Ground Beam Diameter Pulse Rate	0.01694 4.7m/s 57.47m 287mm*28mm 240kHz	-0.04644	3.1310837	0.0076108	0.0059091

% Aircraft Parameters (Aircraft 2)

Hardware Parameters

Payload	DJI Zenmuse L1
Payload SN	3FCDJ86004F5LJ
LiDAR Parameters	https://enterprise.dji.com/zenmuse-l1/specs

LiDAR and IMU Calibration Parameters

Parameters	X (m)	Y (m)	Z (m)	roll (rad)	pitch (rad)	yaw (rad)			
Before Cali bration	0.03508	0.01694	-0.04644	3.1310837	0.0076108	0.0059091			
Flight Parameter	Flight Parameters (2 Flights)								
Average Flight	Speed	5.1m/s							
Flight Height		52.32m							

Ground Beam Diameter	261mm*26mm
Pulse Rate	240kHz
Scan Rate	720kHz

📽 Aircraft Parameters (Aircraft 3)

Hardware Parameters	
Payload	DJI Zenmuse L2
Payload SN	6U3DLBR004U55Y
LiDAR Parameters	https://enterprise.dji.com/zenmuse-12/specs

LiDAR and IMU Calibration Parameters

Parameters	X (m)	Y (m)	Z (m)	roll (rad)	pitch (rad)	yaw (rad)
Before Cali	0.02667	0.0145	-0.04615	-3.1377091	0.0028995	0.0048439

Flight Parameters (3 Flights)

Average Flight Speed	6.2m/s
Flight Height	59.28m
Ground Beam Diameter	71mm*23mm
FOV	70°*3°
Pulse Rate	240kHz
Scan Rate	1200kHz
Scan Mode	Repetitive

≒ System Parameters

CPU	Intel Core(TM) i9-10900 CPU @ 2.80GHz 20 cores
GPU Count	1
GPU 0	NVIDIA GeForce RTX 2080 SUPER
RAM	32480 M

Accuracy Parameters

OS Status

Fix	100.00%	
1 1/1	100,0070	

Other	0	.00%							
① IMU Trajectory Error									
Parameters	X(E) RMSE	Average X(E)	Y(N) RMSE	Average Y(N)	Z(U) RMSE	Average Z(U)			
Location	0.00013 m	0.00683 m	0.00007 m	0.00545 m	0.00007 m	0.00604 m			
Attitude	0.0000057 rad	0.0001374 rad	0.0000039 rad	0.000144 rad	0.0000906 rad	0.0005087 rad			

Point Cloud Check Point Error

Parameters	No. of Check Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation
Value	2	697.375 m	-0.017464 m	-0.020876 m	-0.014052 m	0.017464 m	0.017794 m	0.025165 m

🗄 Point Cloud Check Point List

ID	Check Point Latitude(Y/N)	Check Point Longitude (X/E)	Check Point Altitude (Z/ U)	Reconstruction Altitude	Altitude Difference	Max Altitude Difference	Average Altitude Differen ce	Reconstruction Altitude S tandard Deviation	Altitude Difference RMS E	Reflectivity
GCP- 01	623893.294 m	6862655.366 m	699.89 m	699.876948 m	-0.014052 m	0.069022 m	-0.014052 m	0.036969 m	0.039507 m	71.4
GCP- 10	623844.599 m	6862375.683 m	694.86 m	694.838124 m	-0.020876 m	0.10859 m	-0.020876 m	0.030459 m	0.036897 m	69.78

Optimize Point Cloud Control Point Error

Parameters	No. of Control Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation
Value	7	702.529286 m	0.000024 m	-0.016195 m	0.016915 m	0.009731 m	0.011654 m	0.012588 m

🗖 Point Cloud Control Point List

ID	Control Point Latitude(Y/ N)	Control Point Longitude (X/E)	Control Point Altitude(Z/ U)	Reconstruction Altitude	Altitude Difference	Max Altitude Difference	Average Altitude Differen ce	Reconstruction Altitude S tandard Deviation	Altitude Difference RMS E	Reflectivity
GCP- 11	623760.745 m	6862029.437 m	695.17 m	695.16481 m	-0.00219 m	0.108269 m	-0.00219 m	0.027629 m	0.027681 m	67.47
GCP- 02	623894.912 m	6862641.69 m	703.98 m	703.982036 m	0.005036 m	0.109304 m	0.005036 m	0.044219 m	0.044451 m	80.58
GCP- 03	623809.312 m	6862650.165 m	701.81 m	701.791805 m	-0.016195 m	0.10594 m	-0.016195 m	0.032126 m	0.035958 m	70.19
GCP- 04	623935.701 m	6862900.757 m	704.23 m	704.209409 m	-0.015591 m	0.061194 m	-0.015591 m	0.026628 m	0.030845 m	93.55
GCP- 05	624088.352 m	6862759.314 m	706.32 m	706.328331 m	0.011331 m	0.07216 m	0.011331 m	0.026877 m	0.029133 m	47.88
GCP- 06	624237.948 m	6862423.539 m	709.56 m	709.562861 m	0.000861 m	0.067211 m	0.000861 m	0.023092 m	0.023086 m	63.33
GCP- 07	624097.639 m	6861921.101 m	696.65 m	696.665915 m	0.016915 m	0.12633 m	0.016915 m	0.029016 m	0.033571 m	52.22

DEM Error

Parameters	No. of Check Points	Average Altitude	Average Altitude Difference	Min Altitude Difference	Max Altitude Difference	Average Absolute Value of Altitu de Difference	Root Mean Square	Standard Deviation
Value	2	697.375 m	-0.107819 m	-0.146729 m	-0.068909 m	0.107819 m	0.114625 m	0.162104 m

🗖 DEM Checklist

ID	Check Point Latitude(Y/N)	Check Point Longitude(X/E)	Check Point Altitude (Z/U)	Reconstruction Altitude	Altitude Difference	Reflectivity

GCP- 01	623893.294 m	6862655.366 m	699.89 m	699.744271 m	-0.146729 m	71.4	
GCP- 10	623844.599 m	6862375.683 m	694.86 m	694.790091 m	-0.068909 m	69.78	
i When a	When altitude difference between check point and actual point is greater than 60 cm, error data of the check point will be displayed as * and the check point will not be used for calculation						

Output Preview

🖸 DEM

Output Parameters

፰ Point Clou	∓ Point Cloud Density									
Scale	Point Cloud Average Density	Point Cloud Standard Density	Grid Side Length	Total Grid Number	Non-conforming Grid Ratio					
1:500	1746points/m ²	16points/m ²	0.25 m	500516	1.77%					
1:1000	1746points/m ²	4points/m ²	0.5 m	127424	1.8%					
1:2000	1746points/m ²	1points/m ²	1 m	32588	2.25%					

🗋 Output List

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg C, side: 1

Vedlegg C

OVERSIKTSKARTLEGGING

Innhold

C1	Oversiktskartlegging med dronebilder	2
C2	Dekningsområde	2
С3	Prosessering av dronebilder	3
C4	Vurdering av kvalitet	3
C5	Dataleveranser	5

Vedlegg

2024-06-11-P1-PPK_Quality Report

69.6 m

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg C, side: 2

C1 Oversiktskartlegging med dronebilder

Feltarbeid ble utført 11.juni 2024 av Eivind Magnus Paulsen. Kartlegging av terrenget ble utført med en drone av typen DJI M300 med fullformat kamera Zenmuse P1. Den aktuelle sensoren ble leid inn fra Universitetet i Oslo (UIO) i forbindelse med utprøving av nytt utstyr. Den optiske kvaliteten og oppløsningen på 1.2 cm/piksel ble meget god, men posisjonsnøyaktighet kunne vært litt bedre. Se forklaring i avsnitt C4.

C2 Dekningsområde

Oversiktskartleggingen dekker et areal på ca. 0.5 kvadratkilometer, som vist i figur 2-1.

Figur 2-1 viser området som er dekket av oversiktskartlegging med M300RTK og P1.

C3 Prosessering av dronebilder

Dronen har innebygde sensorer som kontinuerlig registrerer posisjon og orientering. Ved bruk av sanntids korreksjon fra en lokal GNSS basestasjon blir posisjonen bestemt med centimeter-nøyaktighet. Dronebildene er prosessert i programmet *MetaShape* hvor diverse algoritmer finner sammenfallende punkter i overlappende bilder. Deretter skapes en grov punktsky som brukes til å finjustere orienteringen og kalibrering av dronebildene. Neste trinn er å produsere en detaljert punktsky, terrengmodell og ortofoto. Se vedlagt kvalitetsrapport fra prosessering av dronebilder.

C4 Vurdering av kvalitet

De kjente kontrollpunktene er brukt til å kontrollere nøyaktighet i orientering av bilder og rekonstruksjon av punktsky. Rapporten fra prosessering viser avvik som er høyere enn forventet. Se figur 4-1 og Tabell 4-1.

Figur 4-1 viser avvik mellom kontrollpunkter og punktsky fra 3D-rekonstruksjon.

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)	
GCP-11	0.873976	-2.14596	7.18851	7.55273	1.710 (15)	
GCP-02	0.510013	-0.374532	-4.16238	4.2102	1.553 (8)	
GCP-03	-0.858959	-0.702659	-4.31608	4.45646	2.122 (8)	
GCP-04	1.89683	-0.461984	-4.51829	4.92202	0.847 (17)	
GCP-05	-0.612569	0.743083	7.94746	8.00559	2.708 (9)	
GCP-06	2.49725	0.986534	3.52636	4.43224	4.831 (3)	
GCP-07	-2.22693	2.87923	-12.1496	12.6832	2.767 (12)	
GCP-10	-2.46596	-0.512834	3.03355	3.94289	1.024 (12)	
Total	1.696	1.39333	6.52358	6.88295	2.047	

 Tabell 4-1
 Oversikt over avvik i de forskjellige kontrollpunktene.

Table 6. Control points.

X - Longitude, Y - Latitude, Z - Altitude.

En forklaring kan være en kombinasjon av flere faktorer:

- Den aktuelle sensoren P1 var ikke kalibrert sammen med 35mm-objektivet. Det var også en feilmelding på kontrolleren som varslet om behov for kalibrering av fokus. Det var dessverre ikke nok tid til å gjøre denne kalibreringen mens vi var i felt. Kalibreringen utføres ved å fly en spesiell rute som inkluderer skråfoto, og som i tillegg har over 100 bilder. Disse bildene må deretter prosesseres på kontoret før en fil med kalibreringsdata lagres tilbake i kamera.
- En feil innstilling medførte at for mye data ble skrevet til minnekortet. Konsekvensen var at kamera ikke rakk å lagre alle bilder tidsnok, som igjen gjorde at overlapp mellom bilder ble redusert. Det er vanligvis tilstrekkelig med komprimerte JPEG-bilder, men her ble bilder i fullformat (RAW) lagret i tillegg.
- Den automatiserte flyruten rakk ikke å gjøre seg ferdig fordi minnekortet på 128 GB gikk fullt. Det medførte igjen at kontrollpunkter GCP-05 og GCP-06 ikke ble dekket av et tilstrekkelig antall bilder, i tillegg til at den siste flystripen med skråfoto inn mot sentrum av kartleggingsområdet heller ikke ble lagret.

Kvaliteten på ortofoto er, til tross for nevnte svakheter, mer enn godt nok til formålet, dvs. visuell analyse og som et referansegrunnlag. Se neste avsnitt med eksempler på ortofoto med svært god oppløsning.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg C, side: 5

C5 Dataleveranser

Oversiktskartleggingen med drone er brukt til å lage ortofoto som kan brukes som bakgrunnskart og innsyn. Ortofoto er flybilder med samme geometriske egenskaper som et kart, det vil si at det er lik målestokk i hele bildet. Fotografiets perspektiviske fortegning og radielle forskyvning er fjernet med en rektifisering av bildet på grunnlag av bildets orientering og en høydemodell av terrenget. Figurene 5-1 og 5-2 viser hva som er mulig oppløsning med sensoren P1 og en flyhøyde på ca. 100 meter.

Figur 5-1 viser et målestokkriktig ortofoto i målestokk 1:500 (som vist på pc-skjerm).

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg C, side: 6

Figur 5-2 viser et målestokkriktig ortofoto i målestokk 1:100 (som vist på pc-skjerm).

Agisoft Metashape

Processing Report M300RTK with P1 24 June 2024

Survey Data

Fig. 1. Camera locations and image overlap.

Number of images:	894	Camera stations:	894
Flying altitude:	102 m	Tie points:	998,977
Ground resolution:	1.21 cm/pix	Projections:	3,979,756
Coverage area:	0.536 km²	Reprojection error:	0.294 pix

Camera Model	Resolution	Focal Length	Pixel Size	Precalibrated
ZenmuseP1 (35mm)	8192 x 5460	35 mm	4.39 x 4.39 µm	No

Table 1. Cameras.

Camera Calibration

0.748192 pix Fig. 2. Image residuals for ZenmuseP1 (35mm).

ZenmuseP1 (35mm)

894 images, additional corrections

Туре

Resolution

Focal Length

Pixel Size

Frame

8192 x 5460

35 mm

4.39 x 4.39 µm

	Value	Error	F	Сх	Су	К1	К2	КЗ	P1	P2
F	8158.67	1.3	1.00	0.06	0.38	-0.19	-0.00	-0.11	-0.08	-0.03
Cx	-10.9056	0.058		1.00	0.01	-0.01	0.00	-0.01	0.92	-0.03
Су	11.3881	0.06			1.00	-0.05	-0.03	-0.02	-0.04	0.87
К1	-0.0390704	7.4e-05				1.00	-0.97	0.97	0.00	0.02
К2	-0.0165321	0.00032					1.00	-0.99	0.01	-0.02
КЗ	-0.0399999	0.00046						1.00	-0.00	0.02
P1	-0.00104245	3e-06							1.00	-0.03
P2	0.000841134	2.9e-06								1.00

Table 2. Calibration coefficients and correlation matrix.

Camera Locations

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape. Estimated camera locations are marked with a black dot.

X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total error (cm)
42.7765	56.1423	30.9471	70.5818	77.0682

Table 3. Average camera location error.

Ground Control Points

Control points

Z error is represented by ellipse color. X,Y errors are represented by ellipse shape. Estimated GCP locations are marked with a dot or crossing.

Count	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total (cm)
8	1.696	1.39333	6.52358	2.19495	6.88295

Table 4. Control points RMSE.

X - Longitude, Y - Latitude, Z - Altitude.

Count	X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total (cm)
1	0.16574	1.25417	9.0028	1.26507	9.09125

Table 5. Check points RMSE.

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)
GCP-11	0.873976	-2.14596	7.18851	7.55273	1.710 (15)
GCP-02	0.510013	-0.374532	-4.16238	4.2102	1.553 (8)
GCP-03	-0.858959	-0.702659	-4.31608	4.45646	2.122 (8)
GCP-04	1.89683	-0.461984	-4.51829	4.92202	0.847 (17)
GCP-05	-0.612569	0.743083	7.94746	8.00559	2.708 (9)
GCP-06	2.49725	0.986534	3.52636	4.43224	4.831 (3)
GCP-07	-2.22693	2.87923	-12.1496	12.6832	2.767 (12)
GCP-10	-2.46596	-0.512834	3.03355	3.94289	1.024 (12)
Total	1.696	1.39333	6.52358	6.88295	2.047

Table 6. Control points.

X - Longitude, Y - Latitude, Z - Altitude.

Label	X error (cm)	Y error (cm)	Z error (cm)	Total (cm)	Image (pix)
GCP-01	-0.16574	-1.25417	-9.0028	9.09125	0.380 (9)
Total	0.16574	1.25417	9.0028	9.09125	0.380

Table 7. Check points.

Digital Elevation Model

Resolution: Point density: 19.4 cm/pix 26.6 points/m²

Processing Parameters

General

Cameras Aligned cameras Markers Coordinate system Rotation angles **Tie Points** Points RMS reprojection error Max reprojection error Mean key point size Point colors Key points Average tie point multiplicity **Alignment parameters** Accuracy Generic preselection Reference preselection Key point limit Key point limit per Mpx Tie point limit Exclude stationary tie points Guided image matching Adaptive camera model fitting Matching time Matching memory usage Alignment time Alignment memory usage **Optimization parameters** Parameters Fit additional corrections Adaptive camera model fitting Optimization time Date created Software version File size **Depth Maps** Count Depth maps generation parameters Quality Filtering mode Max neighbors Processing time Memory usage Date created Software version File size **Point Cloud** Points **Point attributes**

894 894 9 ETRS89 (EPSG::4258) Yaw, Pitch, Roll 998,977 of 2,429,845 0.115939 (0.293597 pix) 0.384822 (2.28283 pix) 2.50018 pix 3 bands, uint8 2.87 GB 3.29676 High No No 40,000 100,000 60,000 Yes No Yes 8 hours 15 minutes 6.41 GB 19 minutes 31 seconds 1.38 GB f, cx, cy, k1-k3, p1, p2 Yes No 2 minutes 23 seconds 2024:06:18 15:54:02 2.0.3.16960 182.74 MB 894 Medium Mild 16 35 minutes 31 seconds 3.22 GB 2024:06:19 09:33:04 2.0.3.16960 3.01 GB 20,424,260

Color	3 bands, uint8
Normal	
Confidence	1 - 26
Point classes	
Created (never classified)	20,424,260
Depth maps generation parameters	
Quality	Lowest
Filtering mode	Mild
Max neighbors	16
Processing time	12 minutes 55 seconds
Memory usage	1.12 GB
Point cloud generation parameters	
Processing time	7 minutes 1 seconds
Memory usage	2.55 GB
Date created	2024:06:19 06:44:42
Software version	2.0.3.16960
File size	295.46 MB
Tiled Model	
Texture	3 bands, uint8
Depth maps generation parameters	
Quality	Medium
Filtering mode	Mild
Max neighbors	16
Processing time	35 minutes 31 seconds
Memory usage	3.22 GB
Reconstruction parameters	
Source data	Depth maps
Tile size	256
Face count	Medium
Enable ghosting filter	No
Processing time	16 hours 14 minutes
Memory usage	25.45 GB
Date created	2024:06:20 02:21:00
Software version	2.0.3.16960
File size	7.16 GB
DEM	
Size	2,987 x 5,871
Coordinate system	ETRS89 / UTM zone 32N + NN2000 height (EPSG::5972)
Reconstruction parameters	
Source data	Point cloud
Interpolation	Enabled
Processing time	1 minutes 47 seconds
Memory usage	246.47 MB
Date created	2024:06:20 06:15:01
Software version	2.0.3.16960
File size	53.68 MB
Orthomosaic	
Size	11,588 x 22,776
Coordinate system	ETRS89 / UTM zone 32N + NN2000 height (EPSG::5972)
Colors	3 bands, uint8
Reconstruction parameters	
Blending mode	Mosaic
Surface	DEM
Enable hole tilling	Yes
Enable ghosting filter	No
Processing time	11 minutes 15 seconds

Page 9

Memory usage Date created Software version File size

System

Software name Software version OS RAM CPU GPU(s) 815.51 MB 2024:06:20 08:19:41 2.0.3.16960 3.23 GB

Agisoft Metashape Professional 2.0.3 build 16960 Windows 64 bit 31.72 GB Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz NVIDIA GeForce RTX 2080 SUPER

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 1

Vedlegg D

DETALJKARTLEGGING AV SIKRINGSTILTAK

Innhold

2
2
3
6
7

Vedlegg

Kvalitetsrapport_detaljkartlegging

D1 Detaljkartlegging med dronebilder

Feltarbeid ble utført 11.juni 2024 av Eivind Magnus Paulsen. Kartlegging av terrenget ble utført med en drone av typen DJI Mavic 3 Enterprise med RTK-modul. Ved detaljkartleggingen ble dronen flydd manuelt og veldig nærme bakken. Totalt antall bilder er over 600 som dekker det aktuelle sikringstiltaket.

D2 Dekningsområde

Figur 2-1 viser området som er dekket av detaljkartlegging med dronen Mavic 3E.

Figur 2-1 viser området i umiddelbar nærhet til sikringstiltaket som er inkludert i detaljkartlegging.

D3 Prosessering av dronebilder

Dronen har innebygde sensorer som kontinuerlig registrerer posisjon og orientering. Ved bruk av sanntids korreksjon fra en lokal GNSS basestasjon blir posisjonen bestemt med centimeter-nøyaktighet. Dronebildene er prosessert i programmet *MetaShape* hvor diverse algoritmer finner sammenfallende punkter i overlappende bilder. Deretter skapes en grov punktsky som brukes til å finjustere orienteringen og kalibrering av dronebildene. Neste trinn er å produsere en detaljert punktsky og eventuelle 3D-modeller.

Figur 3-1 viser oversiktsbilde av en 3D-modell av sikringstiltaket per 11. juni 2024.

Figur 3-2 viser et utsnitt av en 3D-modell av sikringstiltaket per 11. juni 2024.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 4

Figur 3-3 viser et utsnitt av en 3D-modell av sikringstiltaket per 11.juni 2024

Figur 3-4 viser et utsnitt av en 3D-modell av sikringstiltaket per 11.juni 2024

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 5

Figur 3-5 viser bilder projisert sammen med 3D-modell i programmet MetaShape. Det gjør at det er mulig å se detaljer som ikke er med i 3D-modellen.

Figur 3-5 bilder projisert sammen med 3D-modell i programmet MetaShape.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 6

D4 Kvalitetskontroll

Noen av bildene har en posisjon med større usikkerhet, men det skyldes at det er inkludert et par høyoppløselige bilder fra sensoren P1 med en flyhøyde på 100 meter. Disse bildene ble inkludert for å forbedre den visuelle kvaliteten på 3D-modellen. Figur 4-1 viser et utdrag fra vedlagt kvalitetsrapport fra prosessering av dronebilder.

Figur 4-1 viser noen bilder med lavere nøyaktighet i posisjon, men det skyldes at de er tatt med et annet kamera og fra en flyhøyde på ca. 100 meter.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 7

D5 Dataleveranser

Detaljkartleggingen med drone er brukt til å lage en punktsky som kan brukes til videre analyse og visualisering av sikringstiltaket. viser punktskyen som er basert på 3D-rekonstruksjon av målinger i dronebilder. Punktene er fargelagt med RGB-verdier fra bildene.

Figur 5-1 Punktskyen som kan brukes til å se på endringer over tid.

Det er også områder i modellen som er gjemt bak overhengende vegetasjon. Figur 5-2 viser vegetasjon som henger over kanten på skråningen på grunn av erosjon i underkant. På grunn av et høyt antall bilder var det likevel mulig å rekonstruere disse områdene.

På grunn av vegetasjon blir noen områder rekonstruert med lavere kvalitet, og noen steder mangler det punkter. Det er en velkjent utfordring med fotogrammetri fordi samme punkt i terrenget helst bør være synlig i 5 til 9 bilder. Det er ikke mulig i mellom-rommet mellom de store steinene. Figur 5-3 viser med grå farge områder som har stor usikkerhet, og med lys oransje/gul områder med lav usikkerhet.

Dokumentnr.: 20240339-01-TN Dato: 2024-08-30 Rev.nr.: 0 Vedlegg D, side: 8

Figur 5-2 viser et utsnitt som viser vegetasjon som henger over kanten på grunn av erosjon.

Figur 5-3 Områder i punktskyen som har god nøyaktighet. Lys gul er best, og grått er dårligst.

Mistdalen Sikringstiltak 2024

Processing Report 18 June 2024

Survey Data

Fig. 1. Camera locations and image overlap.

Number of images:	607	Camera stations:	607
Flying altitude:	4.3 m	Tie points:	650,525
Ground resolution:	1.42 mm/pix	Projections:	3,473,311
Coverage area:	537 m²	Reprojection error:	0.658 pix

Camera Model	Resolution	Focal Length	Pixel Size	Precalibrated
M3E (12.29mm)	5280 x 3956	12.29 mm	3.36 x 3.36 µm	Yes
ZenmuseP1 (35mm)	8192 x 5460	35 mm	4.39 x 4.39 µm	No

Table 1. Cameras.

Camera Calibration

Fig. 2. Image residuals for M3E (12.29mm).

M3E (12.29mm)

602 images, precalibrated, additional corrections

Frame	5280 x 3956	12.29 mm	3.36 x 3.36 µm
Туре	Resolution	Focal Length	Pixel Size

	Value	Error	F	Сх	Су	К1	К2	КЗ	P1	P2
F	3742.38	0.045	1.00	0.04	0.05	-0.96	0.94	-0.92	0.00	0.09
Cx	14.8203	0.02		1.00	-0.02	-0.02	0.01	-0.01	0.63	0.00
Су	-16.5457	0.025			1.00	-0.10	0.11	-0.13	-0.01	0.76
К1	-0.148583	6.3e-05				1.00	-0.99	0.98	-0.01	-0.10
К2	0.087272	0.00012					1.00	-0.99	0.01	0.12
КЗ	-0.0732388	6.8e-05						1.00	-0.01	-0.14
P1	-1.20906e-06	1.2e-06							1.00	-0.01
P2	-0.000113988	1.6e-06								1.00

Table 2. Calibration coefficients and correlation matrix.

Camera Calibration

Fig. 3. Image residuals for ZenmuseP1 (35mm).

ZenmuseP1 (35mm)

5 images, additional corrections

Туре	Resolution	Focal Length	Pixel Size
Frame	8192 x 5460	35 mm	4.39 x 4.39 μm

	Value	Error	F	Cx	Су	К1	К2	КЗ	P1	P2
F	8187.58	8	1.00	-0.20	0.01	-0.16	0.21	-0.20	-0.09	-0.02
Cx	-10.2424	2.8		1.00	-0.06	0.15	-0.11	0.05	0.91	-0.08
Су	6.93957	3			1.00	-0.03	0.02	-0.01	-0.05	0.99
К1	-0.0398374	0.0021				1.00	-0.95	0.90	-0.03	-0.03
К2	-0.0267806	0.0089					1.00	-0.99	-0.01	0.02
КЗ	-0.0215588	0.013						1.00	0.01	-0.01
P1	-0.000883863	0.00014							1.00	-0.09
P2	0.000538962	0.00016								1.00

Table 3. Calibration coefficients and correlation matrix.

X error (cm)	Y error (cm)	Z error (cm)	XY error (cm)	Total error (cm)
2.00898	1.30024	1.41633	2.39304	2.78076

Table 4. Average camera location error.

Digital Elevation Model

Fig. 5. Reconstructed digital elevation model.

Resolution: unknown Point density: unknown

Processing Parameters

General

607 Cameras Aligned cameras 607 Markers 1 ETRS89 (EPSG::4258) Coordinate system Rotation angles Yaw, Pitch, Roll **Tie Points** Points 650,525 of 1,854,046 RMS reprojection error 0.189513 (0.657871 pix) 1.07447 (18.4159 pix) Max reprojection error Mean key point size 3.01145 pix Point colors 3 bands, uint8 Key points 1.95 GB 4.39584 Average tie point multiplicity **Alignment parameters** Accuracy High Generic preselection No Reference preselection No 40,000 Key point limit Key point limit per Mpx 100,000 60,000 Tie point limit Filter points by mask Yes Mask tie points No Exclude stationary tie points Yes Guided image matching No Adaptive camera model fitting Yes 3 hours 39 minutes Matching time Matching memory usage 4.26 GB 12 minutes 26 seconds Alignment time Alignment memory usage 1.63 GB **Optimization parameters** Parameters f, cx, cy, k1-k3, p1, p2 Fit additional corrections Yes Adaptive camera model fitting No Optimization time 1 minutes 11 seconds Date created 2024:06:16 19:12:52 Software version 2.0.3.16960 File size 175.74 MB **Depth Maps** Count 607 Depth maps generation parameters Quality High Filtering mode Mild Max neighbors 16 Processing time 42 minutes 30 seconds Memory usage 6.65 GB Date created 2024:06:16 22:14:49 Software version 2.0.3.16960 File size 4.53 GB **Point Cloud**

Points	71,609,933
Point attributes	
Color	3 bands, uint8
Normal	
Confidence	7 - 97
Point classes	
Created (never classified)	71,609,933
Depth maps generation parameters	
Quality	High
Filtering mode	Mild
Max neighbors	16
Processing time	42 minutes 30 seconds
Memory usage	6.65 GB
Point cloud generation parameters	
Processing time	2 hours 55 minutes
Memory usage	18.87 GB
Date created	2024:06:17 01:10:46
Software version	2.0.3.16960
File size	2.83 GB
Tiled Model	
Texture	3 bands, uint8
Depth maps generation parameters	
Quality	High
Filtering mode	Mild
Max neighbors	16
Processing time	42 minutes 30 seconds
Memory usage	6.65 GB
Reconstruction parameters	
Source data	Depth maps
Tile size	256
Face count	Medium
Enable ghosting filter	No
Processing time	9 hours 23 minutes
Memory usage	8.46 GB
Date created	2024:06:17 15:06:48
Software version	2.0.3.16960
File size	705.61 MB
System	
Software name	Agisoft Metashape Professional
Software version	2.0.3 build 16960
OS	Windows 64 bit
RAM	31.72 GB
CPU	Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz
GPU(s)	NVIDIA GeForce RTX 2080 SUPER

NG Kontroll- og referanseside/ Review and reference page

Dokumentinformasjon/Document information							
Dokumenttittel/Document title		Dokumentnr./Document no.					
Kartlegging, produksjon og analyse av terrengmodeller		20240339-01-TN					
Dokumenttype/Type of document	Oppdragsgiver/Client	Dato/Date					
Teknisk notat / Technical note	Statsforvalteren i Innlandet	2024-08-30					
Rettigheter til dokumentet iht kontrak	t/Proprietary rights to the document	Rev.nr. & dato/Rev.no. & date					
according to contract		0/					
NGI							
Distribusjon/Distribution							
BEGRENSET: Distribueres til oppdragsgiver og er tilgjengelig for NGIs ansatte / LIMITED: Distributed to client and							
available for NGI employees							
Emneord/ <i>Keywords</i>							
Erosjon, Sikringstiltak, Elv, Lidar, Drone, dGNSS, Kartlegging, Fotogrammetri							
_							

Stedfesting/Geographical information	
Land, fylke/Country Norge, Innlandet	Havområde/Offshore area
Kommune/Municipality Rendalen	Feltnavn/ <i>Field name</i>
Sted/Location Mistdalen	Sted/Location
Kartblad/Map	Felt, blokknr./ <i>Field, Block No.</i>
UTM-koordinater/UTM-coordinates Sone: 32V Øst: 623852 Nord: 6862506	Koordinater/ <i>Coordinates</i> Projeksjon, datum: Øst: Nord:

Dokumentkontroll/Document control Kvalitetssikring i henhold til/Quality assurance according to NS-EN ISO9001							
Rev/ Rev.	Revisjonsgrunnlag/Reason for revision	Egenkontroll av/ Self review by:	Sidemanns- kontroll av/ <i>Colleague</i> <i>review by:</i>	Uavhengig kontroll av/ Independent review by:	Tverrfaglig kontroll av/ Inter- disciplinary review by:		
		2024-08-27	2024-08-29				
0	Originaldokument	Eivind Magnus	Ingar Haug				
		Paulsen	Steinholt				

2015-10-16, 043 n/e, rev.03

NGI – Norges Geotekniske Institutt - er et uavhengig forskningsinstitutt innen geoteknikk og andre ingeniørrettede geofag.

Vi kombinerer geokunnskap og teknologi for å utvikle smarte og bærekraftige løsninger innen infrastruktur på land og til havs, innen miljøteknologi, forurenset grunn og naturfarer som jord- og snøskred. Forskningen vår leverer kunnskap som bidrar til å løse noen av de viktigste utfordringene verden står overfor innenfor klima, miljø, energi og samfunnssikkerhet.

Samfunnsoppgaven vår er å utvikle geofagene og fremskaffe kunnskapsgrunnlaget for å bygge, bo og ferdes på sikker grunn. Dette løser vi ved å la forskning og rådgivning gå "hånd i hånd" og være brobygger mellom akademia, næringsliv og det offentlige.

Vi har kontorer i Norge, USA og Australia og vi har internasjonalt anerkjente laboratorier.

www.ngi.no

NGI – The Norwegian Geotechnical Institute – is an independent research centre in the field of geotechnical engineering and the engineering geosciences.

We combine geotechnical knowledge and technology to develop smart and sustainable solutions in infrastructure on land and at sea, in environmental technology, contaminated soil and natural hazards such as landslides and avalanches. Our research provides knowledge that contributes to solve some of the most important challenges the world faces with regards to climate, the environment, energy and societal security.

Our societal mission is to develop the geosciences and produce the knowledge basis to build, live and travel on safe ground. We solve this by combining research and consulting hand-in-hand and being a bridge-builder between academia, industry and the public sector.

We have offices in Norway, the US and Australia, including internationally recognised laboratories.

www.ngi.no

Dokumentet skal ikke benyttes i utdrag eller til andre formål enn det dokumentet omhandler. Dokumentet må ikke reproduseres eller leveres til tredjemann uten eiers samtykke. Dokumentet må ikke endres uten samtykke fra NGI.

This document shall not be used in parts, or for other purposes than the document was prepared for. The document shall not be copied, in parts or in whole, or be given to a third party without the owner's consent. No changes to the document shall be made without consent from NGI.

NORGES GEOTEKNISKE INSTITUTT NGI.NO

Hovedkontor Oslo PB. 3930 Ullevål Stadion PB. 5687 Torgarden NGI@ngi.no 0806 Oslo 7485 Trondheim

Avd. Trondheim

T 22 02 30 00 BANK

 KONTO 1506 91 98764
 CERTIFIED BY BSI

 ORG.NR 932 089 114 MVA
 FS 32989/EMS 612006

ISO 9001/14001